

Temperature Dependence of the Lattice Dynamics of Nickel

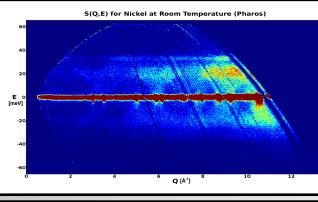
Max Kresch, Olivier Delaire, Rebecca Stevens and Brent Fultz

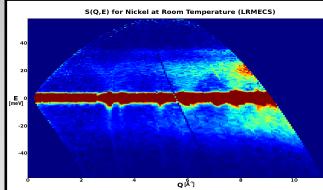
California Institute of Technology, Materials Science Department

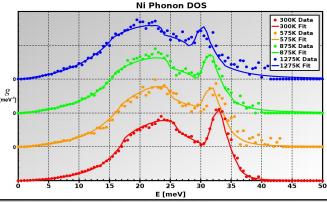
Abstract:

- The majority of the entropy of a solid comes from the vibrations of atoms about their equilibria (phonons).
- As the temperature increases, the inter-atomic forces change. causing shifts in the phonon spectrum.
- In this study we investigate the changes in the nickel phonon Density of States (DOS) at temperatures from 300K – 1275 K.
- We also consider data from two generations of time-of-flight. direct geometry, inelastic chopper spectrometers.

Neutron Scattering Measurements:

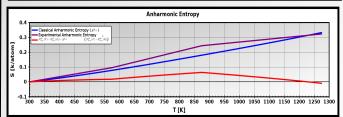

- · Measurements made on two spectrometers.
- Pharos Ei = 70 meV (Los Alamos Neutron Science Center)
 LRMECS Ei = 60 meV (Intense Pulsed Neutron Source, Argonne)
- Samples were flat plate, 10% scatterers, displex mounted.


Phonon DOS and Modeling:


- The phonon DOS were obtained from S(E) after performing multiphonon, Debye-Waller and thermal corrections.
- The DOS were fit with Born-von Kármán (BvK) models of the lattice dynamics.

Coherent Inelastic Scattering:

- Maps of S(Q,E) were produced from data collected at two different spectrometers.
- Two data processing techniques were employed: Pharos → `rebinning` methods
- LRMECS → transformation and linear extrapolation
- Coherent scattering in S(Q,E) gives information about the polycrystalline average of phonon dispersions.


Vibrational Entropy

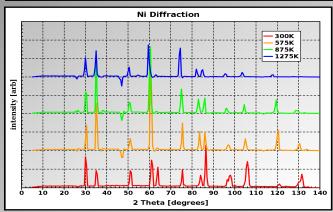
The vibrational entropy is given by

•By considering the DOS at two temperatures, populated at the same temperature, we make comparisons to the classical formula for the anharmoic entropy of a solid.

$$S^{A_{cl}} = \int_{T_0}^T \frac{C_P - C_V}{T'} dT' = \int_{T_0}^T \frac{9B\alpha^2}{\rho_N} dT' ? = ?S^{vib}_{T_{pop}} - S^{vib}_{T_{pop}}$$

Summary and Future Work:

 The Ni phonon DOS was measured at temperatures from 300K - 1275K.


- The DOS were fit with BvK models of the lattice dynamics.
- The softening of the DOS was consistent with the expansion of the Ni lattice.

• Work is currently under way to fir S(Q,E) directly with a BvK model.

Neutron Diffraction:

Neutron diffraction patterns were taken in-situ at Pharos.

